Development of Solid-State Electrolytes for Li-Ion Battery

 

Ru-Shi Liu (劉如熹)

Department of Chemistry, National Taiwan University, Taipei, Taiwan

 


Abstract:

To reach carbon neutrality before 2060, 80% of fossil fuels are to be replaced by renewable energy to decrease CO2 emissions. In energy substitution, energy storage devices, such as Li-ion batteries, are widely used in the smart grid and electric cars. After 30 years of development, the energy density of Li-ion batteries reaches 300 mAh kg-1. Solid-state Li-metal batteries are studied intensively to reach a high energy density of 500 mAh kg-1 before 2030. In a solid-state battery, solid-state electrolyte plays an important role in improving electrochemical performance. In this report, an development on solid-state electrolytes will be introduced.

  

Keywords – solid-state electrolyte, Li-ion battery, smart grid, electric cars, CO2 emission

 

References:

[1] Y. K. Liao, Z. Tong, C. C. Fang, S. C. Liao, J. M. Chen, R. S. Liu, and S. F. Hu, “Extensively Reducing Interfacial Resistance by the Ultrathin Pt Layer between the Garnet-Type Solid-State Electrolyte and Li−Metal Anode,”, ACS Appl. Mater. Interfaces, 2021, 13, 56181-56190.

[2] A. Jena, Z. Z. Tong, B. Bazri, K. Iputera, H. Chang, S. F. Hu, and R. S. Liu, “In Situ/Operando Methods of Characterizing All-Solid-State Li-Ion Batteries: Understanding Li-Ion Transport during Cycle,” J. Phys. Chem. C, 2021,125, 16921-16937.

[3] Z. Z.Tong, B. Bazri, S. F. Hu, and R. S. Liu, “Interfacial chemistry in anode-free batteries: challenges and strategies,” J. Mater. Chem. A, 2021, 9, 7396-7406.

[4] Z. Tong, S. B. Wang, Y. K. Liao, S. F. Hu, R. S. Liu, “Interface Between Solid-State Electrolytes and Li-Metal Anodes: Issues, Materials, and Processing Routes,” ACS Appl. Mater. Interfaces, 2020, 12, 47181-47196.

[5] Z. Tong, S. B. Wang, A. Jena, C. E. Liu, S. C. Liao, J. M. Chen, H. Chang, S. F. Hu, X. Guo, and R. S. Liu, “Matchmaker of Marriage between a Li Metal Anode and NASICON‐Structured Solid‐State Electrolyte: Plastic Crystal Electrolyte and Three-Dimensional Host Structure,” ACS Appl. Mater. Interfaces, 2020, 12, 44754-44761.

[6] Y. Meesala, Y. K. Liao, A. Jena, N. H. Yang, W. K. Pang, S. F. Hu, H. Chang, C. E. Liu, S. C. Liao, J. M. Chen, X. Guo, and R. S. Liu, “An Efficient Multi-Doping Strategy to Enhance Li-Ion Conductivity in the Garnet-Type Solid Electrolyte Li7La3Zr2O12”, J. Mater. Chem. A, 2019, 7, 8589-8601.

[7] A. Jena, Y. Meesala, S. F. Hu, H. Chang, and R. S. Liu, “Ameliorating Interfacial Ionic Transportation in All-Solid-State Li-Ion Batteries with Interlayer Modifications,” ACS Energy Lett., 2018, 3, 2775-2795.

[8] Y. Meesala, C. Y. Chen, A. Jena, Y. K. Liao, S. F. Hu, H. Chang, and R. S. Liu, “All-Solid-State Li-Ion Battery Using Li1.5Al0.5Ge1.5(PO4)3 As Electrolyte Without Polymer Interfacial Adhesion,” J. Phys. Chem. C, 2018,122, 14383-14389.

[9] Y. Meesala, A. Jena, H. Chang, and R. S. Liu, “Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries,” ACS Energy Lett., 2017, 2, 2734-2751.

 


新竹市 WEATHER

30076 新竹市科學園區新安路101號 | 電話:+886-3-578-0281 | 傳真:+886-3-578-9816